On families of elliptic curves 𝐸_{𝑝,π‘ž}:𝑦²=π‘₯Β³-π‘β’π‘žβ’π‘₯ that intersect the same line 𝐿_{π‘Ž,𝑏}:𝑦={π‘Ž/𝑏}⁒π‘₯ of rational slope (2024)

Table of Contents
1. Introduction 2. Finding 60 cases 3. Six conditions for Ep,qsubscriptπΈπ‘π‘žE_{p,q}italic_E start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT to have rational points 3.1. Case 17: 𝒒=π’‚πŸ+π’‘β’π’ƒπŸ’π’’superscript𝒂2𝒑superscript𝒃4\boldsymbol{q=a^{2}+pb^{4}}bold_italic_q bold_= bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_p bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT 3.2. Case 26: 𝒑⁒𝒒=π’‚πŸ+π’ƒπŸ’π’‘π’’superscript𝒂2superscript𝒃4\boldsymbol{pq=a^{2}+b^{4}}bold_italic_p bold_italic_q bold_= bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT 3.3. Case 32: 𝒑⁒𝒒=π’‚πŸ+πŸπ’ƒπŸ’π’‘π’’superscript𝒂21superscript𝒃4\boldsymbol{pq=\frac{a^{2}+1}{b^{4}}}bold_italic_p bold_italic_q bold_= divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_1 end_ARG start_ARG bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT end_ARG 3.4. Case 40: 𝒑=π’’β’π’ƒπŸ’βˆ’π’‚πŸπ’‘π’’superscript𝒃4superscript𝒂2\boldsymbol{p=qb^{4}-a^{2}}bold_italic_p bold_= bold_italic_q bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT bold_- bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT 3.5. Case 47: 𝒒=π’‘β’π’ƒπŸ’βˆ’π’‚πŸπ’’π’‘superscript𝒃4superscript𝒂2\boldsymbol{q=pb^{4}-a^{2}}bold_italic_q bold_= bold_italic_p bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT bold_- bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT 3.6. Case 56: 𝒑⁒𝒒=π’ƒπŸ’βˆ’π’‚πŸπ’‘π’’superscript𝒃4superscript𝒂2\boldsymbol{pq=b^{4}-a^{2}}bold_italic_p bold_italic_q bold_= bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT bold_- bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT 4. Considering 𝒃𝒃\boldsymbol{b}bold_italic_b being not prime 4.1. Case 17 with 𝒃𝒃\boldsymbol{b}bold_italic_b not prime: 𝒒=π’‚πŸ+π’‘β’π’ƒπŸ’π’’superscript𝒂2𝒑superscript𝒃4\boldsymbol{q=a^{2}+pb^{4}}bold_italic_q bold_= bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_p bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT 4.2. Case 26 with 𝒃𝒃\boldsymbol{b}bold_italic_b not prime: 𝒑⁒𝒒=π’‚πŸ+π’ƒπŸ’π’‘π’’superscript𝒂2superscript𝒃4\boldsymbol{pq=a^{2}+b^{4}}bold_italic_p bold_italic_q bold_= bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT 4.3. Case 47 with 𝒃𝒃\boldsymbol{b}bold_italic_b not prime: 𝒒=π’‘β’π’ƒπŸ’βˆ’π’‚πŸπ’’π’‘superscript𝒃4superscript𝒂2\boldsymbol{q=pb^{4}-a^{2}}bold_italic_q bold_= bold_italic_p bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT bold_- bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT 4.4. Case 56 with 𝒃𝒃\boldsymbol{b}bold_italic_b not prime: 𝒑⁒𝒒=π’ƒπŸ’βˆ’π’‚πŸπ’‘π’’superscript𝒃4superscript𝒂2\boldsymbol{pq=b^{4}-a^{2}}bold_italic_p bold_italic_q bold_= bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT bold_- bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT 5. Visualize Patterns 6. Conclusion and Outlook 7. Acknowledgements Appendix A Reasons for some cases to be unsatisfiable Appendix B Reasons for some cases to be redundant B.1. Case 8: 𝒑=π’’β’π’ƒπŸβˆ’π’‚πŸπ’ƒπ’‘π’’superscript𝒃2superscript𝒂2𝒃\boldsymbol{p=qb^{2}-\frac{a^{2}}{b}}bold_italic_p bold_= bold_italic_q bold_italic_b start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_- divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_italic_b end_ARG B.2. Case 14: 𝒑=πŸβ’π’‚πŸ+π’’β’π’ƒπŸ’β’π’ƒπŸ‘π’‘2superscript𝒂2𝒒𝒃4superscript𝒃3\boldsymbol{p=\frac{2a^{2}+qb}{4b^{3}}}bold_italic_p bold_= divide start_ARG bold_2 bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_q bold_italic_b end_ARG start_ARG bold_4 bold_italic_b start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT end_ARG B.3. Case 21 and 51: 𝒒=π’‘β’π’ƒΒ±πŸβ’π’‚πŸπŸ’β’π’ƒπŸ‘π’’plus-or-minus𝒑𝒃2superscript𝒂24superscript𝒃3\boldsymbol{q=\frac{pb\pm 2a^{2}}{4b^{3}}}bold_italic_q bold_= divide start_ARG bold_italic_p bold_italic_b bold_Β± bold_2 bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_4 bold_italic_b start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT end_ARG B.4. Case 52: 𝒑=π’’βˆ’π’‚πŸπ’ƒπŸπ’‘π’’superscript𝒂2superscript𝒃2\boldsymbol{p=q-\frac{a^{2}}{b^{2}}}bold_italic_p bold_= bold_italic_q bold_- divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_italic_b start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG B.5. Case 23: 𝒑⁒𝒒=π’‚πŸ+π’ƒπ’ƒπŸ‘π’‘π’’superscript𝒂2𝒃superscript𝒃3\boldsymbol{pq=\frac{a^{2}+b}{b^{3}}}bold_italic_p bold_italic_q bold_= divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_b end_ARG start_ARG bold_italic_b start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT end_ARG B.6. Case 24: 𝒑⁒𝒒=π’‚πŸ+π’ƒπŸπ’ƒπŸπ’‘π’’superscript𝒂2superscript𝒃2superscript𝒃2\boldsymbol{pq=\frac{a^{2}+b^{2}}{b^{2}}}bold_italic_p bold_italic_q bold_= divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_b start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_italic_b start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG B.7. Case 25: 𝒑⁒𝒒=π’‚πŸ+π’ƒπŸ‘π’ƒπ’‘π’’superscript𝒂2superscript𝒃3𝒃\boldsymbol{pq=\frac{a^{2}+b^{3}}{b}}bold_italic_p bold_italic_q bold_= divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_b start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT end_ARG start_ARG bold_italic_b end_ARG B.8. Case 29 and Case 59: 𝒑⁒𝒒=πŸ’β’π’ƒπŸ‘Β±πŸβ’π’‚πŸπ’ƒπ’‘π’’plus-or-minus4superscript𝒃32superscript𝒂2𝒃\boldsymbol{pq=\frac{4b^{3}\pm 2a^{2}}{b}}bold_italic_p bold_italic_q bold_= divide start_ARG bold_4 bold_italic_b start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT bold_Β± bold_2 bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_italic_b end_ARG B.9. Case 44: 𝒑=π’’β’π’ƒβˆ’πŸβ’π’‚πŸπŸ’β’π’ƒπŸ‘π’‘π’’π’ƒ2superscript𝒂24superscript𝒃3\boldsymbol{p=\frac{qb-2a^{2}}{4b^{3}}}bold_italic_p bold_= divide start_ARG bold_italic_q bold_italic_b bold_- bold_2 bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_4 bold_italic_b start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT end_ARG B.10. Case 45: 𝒒=π’‘β’π’ƒπŸ+π’‚πŸπ’ƒπ’’π’‘superscript𝒃2superscript𝒂2𝒃\boldsymbol{q=pb^{2}+\frac{a^{2}}{b}}bold_italic_q bold_= bold_italic_p bold_italic_b start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_italic_b end_ARG References

On families of elliptic curves 𝐸_{𝑝,π‘ž}:𝑦²=π‘₯Β³-π‘β’π‘žβ’π‘₯ that intersect the same line 𝐿_{π‘Ž,𝑏}:𝑦={π‘Ž/𝑏}⁒π‘₯ of rational slope (1)β€…Eldar SultanowEldar Sultanow
Capgemini Deutschland GmbH
Nuremberg, Germany
eldar.sultanow@capgemini.com
,On families of elliptic curves 𝐸_{𝑝,π‘ž}:𝑦²=π‘₯Β³-π‘β’π‘žβ’π‘₯ that intersect the same line 𝐿_{π‘Ž,𝑏}:𝑦={π‘Ž/𝑏}⁒π‘₯ of rational slope (2)β€…Anja JeschkeAnja Jeschke
Capgemini Deutschland GmbH
Hamburg, Germany
anja.jeschke@capgemini.com
,Amir Darwish TfihaAmir Darwish Tfiha
Tishreen University
Science Fuculty
Syria
amirtfiha@tishreen.edu.sy
,On families of elliptic curves 𝐸_{𝑝,π‘ž}:𝑦²=π‘₯Β³-π‘β’π‘žβ’π‘₯ that intersect the same line 𝐿_{π‘Ž,𝑏}:𝑦={π‘Ž/𝑏}⁒π‘₯ of rational slope (3)β€…Madjid TehraniMadjid G. Tehrani
George Washington University
Washington, DC 20052, USA
madjid_tehrani@gwu.edu
andOn families of elliptic curves 𝐸_{𝑝,π‘ž}:𝑦²=π‘₯Β³-π‘β’π‘žβ’π‘₯ that intersect the same line 𝐿_{π‘Ž,𝑏}:𝑦={π‘Ž/𝑏}⁒π‘₯ of rational slope (4)β€…William J BuchananWilliam J Buchanan
Edinburgh Napier University
Edinburgh, UK
b.buchanan@napier.ac.uk

Abstract.

We investigate a special family of elliptic curves, namely Ep,q:y2=x3βˆ’p⁒q⁒x:subscriptπΈπ‘π‘žsuperscript𝑦2superscriptπ‘₯3π‘π‘žπ‘₯E_{p,q}:y^{2}=x^{3}-pqxitalic_E start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT : italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - italic_p italic_q italic_x where p<qπ‘π‘žp<qitalic_p < italic_q are odd primes.Fix a line La.b:y=ab⁒x:subscript𝐿formulae-sequenceπ‘Žπ‘π‘¦π‘Žπ‘π‘₯L_{a.b}:y=\frac{a}{b}xitalic_L start_POSTSUBSCRIPT italic_a . italic_b end_POSTSUBSCRIPT : italic_y = divide start_ARG italic_a end_ARG start_ARG italic_b end_ARG italic_x where aβˆˆβ„€,bβˆˆβ„•formulae-sequenceπ‘Žβ„€π‘β„•a\in\mathbb{Z},b\in\mathbb{N}italic_a ∈ blackboard_Z , italic_b ∈ blackboard_N and (a,b)=1π‘Žπ‘1(a,b)=1( italic_a , italic_b ) = 1. We study sufficient conditions that p𝑝pitalic_p and qπ‘žqitalic_q must satisfy so that there are infinitely many elliptic curves Ep,qsubscriptπΈπ‘π‘žE_{p,q}italic_E start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT that intersect La,bsubscriptπΏπ‘Žπ‘L_{a,b}italic_L start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT.As a result we obtained six conditions for p𝑝pitalic_p and qπ‘žqitalic_q each ensuring that Ep,qsubscriptπΈπ‘π‘žE_{p,q}italic_E start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT has rational points. Moreover we could compact these six conditions down to four conditions and provide a visualization of cases up to p,q≀3581π‘π‘ž3581p,q\leq 3581italic_p , italic_q ≀ 3581.

Key words and phrases:

Elliptic Curves, Rational Points

2010 Mathematics Subject Classification:

14H52

1. Introduction

The fact whether an elliptic curve has rational points or not has been occupying mathematicians for a fairly while. There are stringent conditions under which elliptic curves have definitely rational points.

2. Finding 60 cases

Let La,b:y=ab⁒x:subscriptπΏπ‘Žπ‘π‘¦π‘Žπ‘π‘₯L_{a,b}:y=\frac{a}{b}xitalic_L start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT : italic_y = divide start_ARG italic_a end_ARG start_ARG italic_b end_ARG italic_x be a linear function of rational slope where aβˆˆβ„€,bβˆˆβ„•formulae-sequenceπ‘Žβ„€π‘β„•a\in\mathbb{Z},b\in\mathbb{N}italic_a ∈ blackboard_Z , italic_b ∈ blackboard_N and (a,b)=1π‘Žπ‘1(a,b)=1( italic_a , italic_b ) = 1.Let Ep,q:y2=x3βˆ’p⁒q⁒x:subscriptπΈπ‘π‘žsuperscript𝑦2superscriptπ‘₯3π‘π‘žπ‘₯E_{p,q}:y^{2}=x^{3}-pqxitalic_E start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT : italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - italic_p italic_q italic_x be an elliptic curve where p<qπ‘π‘žp<qitalic_p < italic_q are fixed primes.We aim at finding sufficient conditions for p𝑝pitalic_p and qπ‘žqitalic_q so that there are infinitely many elliptic curves Ep,qsubscriptπΈπ‘π‘žE_{p,q}italic_E start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT intersecting La,bsubscriptπΏπ‘Žπ‘L_{a,b}italic_L start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT.Inserting La,bsubscriptπΏπ‘Žπ‘L_{a,b}italic_L start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT into Ep,qsubscriptπΈπ‘π‘žE_{p,q}italic_E start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT leads to

x3βˆ’(ab)2⁒x2βˆ’p⁒q⁒x=0.superscriptπ‘₯3superscriptπ‘Žπ‘2superscriptπ‘₯2π‘π‘žπ‘₯0x^{3}-\left(\frac{a}{b}\right)^{2}x^{2}-pqx=0.italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - ( divide start_ARG italic_a end_ARG start_ARG italic_b end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_p italic_q italic_x = 0 .

This cubic function has two solutions that are non-trivial. They are given by

x1,2=12⁒(ab)2Β±12⁒(ab)4+4⁒p⁒q.subscriptπ‘₯12plus-or-minus12superscriptπ‘Žπ‘212superscriptπ‘Žπ‘44π‘π‘žx_{1,2}=\frac{1}{2}\left(\frac{a}{b}\right)^{2}\pm\frac{1}{2}\sqrt{\left(\frac%{a}{b}\right)^{4}+4pq}.italic_x start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( divide start_ARG italic_a end_ARG start_ARG italic_b end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Β± divide start_ARG 1 end_ARG start_ARG 2 end_ARG square-root start_ARG ( divide start_ARG italic_a end_ARG start_ARG italic_b end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + 4 italic_p italic_q end_ARG .

In order for x1,2subscriptπ‘₯12x_{1,2}italic_x start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT to be rational, we need a4+4⁒p⁒q⁒b4superscriptπ‘Ž44π‘π‘žsuperscript𝑏4a^{4}+4pqb^{4}italic_a start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + 4 italic_p italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT to be a square:

a4+4⁒p⁒q⁒b4=c2superscriptπ‘Ž44π‘π‘žsuperscript𝑏4superscript𝑐2a^{4}+4pqb^{4}=c^{2}italic_a start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + 4 italic_p italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT = italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT

for some cβˆˆβ„•π‘β„•c\in\mathbb{N}italic_c ∈ blackboard_N. This equation can be factored as 4⁒p⁒q⁒b4=c2βˆ’a4=(cβˆ’a2)⁒(c+a2)4π‘π‘žsuperscript𝑏4superscript𝑐2superscriptπ‘Ž4𝑐superscriptπ‘Ž2𝑐superscriptπ‘Ž24pqb^{4}=c^{2}-a^{4}=(c-a^{2})(c+a^{2})4 italic_p italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT = italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT = ( italic_c - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( italic_c + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ).We want to find all possibilities of how to separate the factors of 4⁒p⁒q⁒b44π‘π‘žsuperscript𝑏44pqb^{4}4 italic_p italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT into the two factors cβˆ’a2𝑐superscriptπ‘Ž2c-a^{2}italic_c - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and c+a2𝑐superscriptπ‘Ž2c+a^{2}italic_c + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.Counting the number of cases boils down to computing the number of divisors of 4⁒p⁒q⁒b44π‘π‘žsuperscript𝑏44pqb^{4}4 italic_p italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT. For τ⁒(n)πœπ‘›\tau(n)italic_Ο„ ( italic_n ) the divisor function with n=p1e1⁒⋯⁒pkek𝑛superscriptsubscript𝑝1subscript𝑒1β‹―superscriptsubscriptπ‘π‘˜subscriptπ‘’π‘˜n=p_{1}^{e_{1}}\cdots p_{k}^{e_{k}}italic_n = italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT β‹― italic_p start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and pksubscriptπ‘π‘˜p_{k}italic_p start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT prime, we have the identity τ⁒(n)=(e1+1)⁒⋯⁒(ek+1)πœπ‘›subscript𝑒11β‹―subscriptπ‘’π‘˜1\tau(n)=(e_{1}+1)\cdots(e_{k}+1)italic_Ο„ ( italic_n ) = ( italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + 1 ) β‹― ( italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + 1 ), see [1, p.34]. If b𝑏bitalic_b is prime, the number of cases is

τ⁒(22⁒p⁒q⁒b4)=(2+1)⁒(1+1)⁒(1+1)⁒(4+1)=60.𝜏superscript22π‘π‘žsuperscript𝑏42111114160\tau(2^{2}pqb^{4})=(2+1)(1+1)(1+1)(4+1)=60.italic_Ο„ ( 2 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_p italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) = ( 2 + 1 ) ( 1 + 1 ) ( 1 + 1 ) ( 4 + 1 ) = 60 .

If b𝑏bitalic_b is not prime, the number of cases is greater.Table 1(a) shows the cases (cβˆ’a2,c+a2)𝑐superscriptπ‘Ž2𝑐superscriptπ‘Ž2(c-a^{2},c+a^{2})( italic_c - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_c + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) whereas Table 1(b) contains the reversed cases (c+a2,cβˆ’a2)𝑐superscriptπ‘Ž2𝑐superscriptπ‘Ž2(c+a^{2},c-a^{2})( italic_c + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_c - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ). Both tables present conditions for p𝑝pitalic_p and qπ‘žqitalic_q.

Casecβˆ’a2𝑐superscriptπ‘Ž2c-a^{2}italic_c - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTc+a2𝑐superscriptπ‘Ž2c+a^{2}italic_c + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTCondition
14⁒p⁒q⁒b44π‘π‘žsuperscript𝑏44pqb^{4}4 italic_p italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT1p⁒q=1βˆ’2⁒a24⁒b4π‘π‘ž12superscriptπ‘Ž24superscript𝑏4pq=\frac{1-2a^{2}}{4b^{4}}italic_p italic_q = divide start_ARG 1 - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG
22⁒p⁒q⁒b42π‘π‘žsuperscript𝑏42pqb^{4}2 italic_p italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT2p⁒q=1βˆ’a2b4π‘π‘ž1superscriptπ‘Ž2superscript𝑏4pq=\frac{1-a^{2}}{b^{4}}italic_p italic_q = divide start_ARG 1 - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG
3p⁒q⁒b4π‘π‘žsuperscript𝑏4pqb^{4}italic_p italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT4444p⁒q=4βˆ’2⁒a2b4π‘π‘ž42superscriptπ‘Ž2superscript𝑏4pq=\frac{4-2a^{2}}{b^{4}}italic_p italic_q = divide start_ARG 4 - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG
4b4superscript𝑏4b^{4}italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT4⁒p⁒q4π‘π‘ž4pq4 italic_p italic_qp⁒q=2⁒a2+b44π‘π‘ž2superscriptπ‘Ž2superscript𝑏44pq=\frac{2a^{2}+b^{4}}{4}italic_p italic_q = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG
5b3superscript𝑏3b^{3}italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT4⁒p⁒q⁒b4π‘π‘žπ‘4pqb4 italic_p italic_q italic_bp⁒q=2⁒a2+b34⁒bπ‘π‘ž2superscriptπ‘Ž2superscript𝑏34𝑏pq=\frac{2a^{2}+b^{3}}{4b}italic_p italic_q = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b end_ARG
6b2superscript𝑏2b^{2}italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT4⁒p⁒q⁒b24π‘π‘žsuperscript𝑏24pqb^{2}4 italic_p italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTp⁒q=2⁒a2+b24⁒b2π‘π‘ž2superscriptπ‘Ž2superscript𝑏24superscript𝑏2pq=\frac{2a^{2}+b^{2}}{4b^{2}}italic_p italic_q = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
7b𝑏bitalic_b4⁒p⁒q⁒b34π‘π‘žsuperscript𝑏34pqb^{3}4 italic_p italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTp⁒q=2⁒a2+b4⁒b3π‘π‘ž2superscriptπ‘Ž2𝑏4superscript𝑏3pq=\frac{2a^{2}+b}{4b^{3}}italic_p italic_q = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG
82⁒p⁒b2𝑝𝑏2pb2 italic_p italic_b2⁒q⁒b32π‘žsuperscript𝑏32qb^{3}2 italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTp=q⁒b2βˆ’a2bπ‘π‘žsuperscript𝑏2superscriptπ‘Ž2𝑏p=qb^{2}-\frac{a^{2}}{b}italic_p = italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b end_ARG
94⁒q⁒b44π‘žsuperscript𝑏44qb^{4}4 italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTp𝑝pitalic_pp=2⁒a2+4⁒q⁒b4𝑝2superscriptπ‘Ž24π‘žsuperscript𝑏4p=2a^{2}+4qb^{4}italic_p = 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT
102⁒q⁒b42π‘žsuperscript𝑏42qb^{4}2 italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT2⁒p2𝑝2p2 italic_pp=a2+q⁒b4𝑝superscriptπ‘Ž2π‘žsuperscript𝑏4p=a^{2}+qb^{4}italic_p = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT
11q⁒b4π‘žsuperscript𝑏4qb^{4}italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT4⁒p4𝑝4p4 italic_pp=2⁒a2+q⁒b44𝑝2superscriptπ‘Ž2π‘žsuperscript𝑏44p=\frac{2a^{2}+qb^{4}}{4}italic_p = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG
12q⁒b3π‘žsuperscript𝑏3qb^{3}italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT4⁒p⁒b4𝑝𝑏4pb4 italic_p italic_bp=2⁒a2+q⁒b34⁒b𝑝2superscriptπ‘Ž2π‘žsuperscript𝑏34𝑏p=\frac{2a^{2}+qb^{3}}{4b}italic_p = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b end_ARG
13q⁒b2π‘žsuperscript𝑏2qb^{2}italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT4⁒p⁒b24𝑝superscript𝑏24pb^{2}4 italic_p italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTp=2⁒a2+q⁒b24⁒b2𝑝2superscriptπ‘Ž2π‘žsuperscript𝑏24superscript𝑏2p=\frac{2a^{2}+qb^{2}}{4b^{2}}italic_p = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
14q⁒bπ‘žπ‘qbitalic_q italic_b4⁒p⁒b34𝑝superscript𝑏34pb^{3}4 italic_p italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTp=2⁒a2+q⁒b4⁒b3𝑝2superscriptπ‘Ž2π‘žπ‘4superscript𝑏3p=\frac{2a^{2}+qb}{4b^{3}}italic_p = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_q italic_b end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG
152⁒q⁒b2π‘žπ‘2qb2 italic_q italic_b2⁒p⁒b32𝑝superscript𝑏32pb^{3}2 italic_p italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTq=p⁒b2βˆ’a2bπ‘žπ‘superscript𝑏2superscriptπ‘Ž2𝑏q=pb^{2}-\frac{a^{2}}{b}italic_q = italic_p italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b end_ARG
164⁒p⁒b44𝑝superscript𝑏44pb^{4}4 italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTqπ‘žqitalic_qq=2⁒a2+4⁒p⁒b4π‘ž2superscriptπ‘Ž24𝑝superscript𝑏4q=2a^{2}+4pb^{4}italic_q = 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT
172⁒p⁒b42𝑝superscript𝑏42pb^{4}2 italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT2⁒q2π‘ž2q2 italic_qq=a2+p⁒b4π‘žsuperscriptπ‘Ž2𝑝superscript𝑏4q=a^{2}+pb^{4}italic_q = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT
18p⁒b4𝑝superscript𝑏4pb^{4}italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT4⁒q4π‘ž4q4 italic_qq=2⁒a2+p⁒b44π‘ž2superscriptπ‘Ž2𝑝superscript𝑏44q=\frac{2a^{2}+pb^{4}}{4}italic_q = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG
19p⁒b3𝑝superscript𝑏3pb^{3}italic_p italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT4⁒q⁒b4π‘žπ‘4qb4 italic_q italic_bq=2⁒a2+p⁒b34⁒bπ‘ž2superscriptπ‘Ž2𝑝superscript𝑏34𝑏q=\frac{2a^{2}+pb^{3}}{4b}italic_q = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_p italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b end_ARG
20p⁒b2𝑝superscript𝑏2pb^{2}italic_p italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT4⁒q⁒b24π‘žsuperscript𝑏24qb^{2}4 italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTq=2⁒a2+p⁒b24⁒b2π‘ž2superscriptπ‘Ž2𝑝superscript𝑏24superscript𝑏2q=\frac{2a^{2}+pb^{2}}{4b^{2}}italic_q = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_p italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
21p⁒b𝑝𝑏pbitalic_p italic_b4⁒q⁒b34π‘žsuperscript𝑏34qb^{3}4 italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTq=2⁒a2+p⁒b4⁒b3π‘ž2superscriptπ‘Ž2𝑝𝑏4superscript𝑏3q=\frac{2a^{2}+pb}{4b^{3}}italic_q = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_p italic_b end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG
222⁒q⁒b22π‘žsuperscript𝑏22qb^{2}2 italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT2⁒p⁒b22𝑝superscript𝑏22pb^{2}2 italic_p italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTp=q+a2b2π‘π‘žsuperscriptπ‘Ž2superscript𝑏2p=q+\frac{a^{2}}{b^{2}}italic_p = italic_q + divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
232⁒b2𝑏2b2 italic_b2⁒p⁒q⁒b32π‘π‘žsuperscript𝑏32pqb^{3}2 italic_p italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTp⁒q=a2+bb3π‘π‘žsuperscriptπ‘Ž2𝑏superscript𝑏3pq=\frac{a^{2}+b}{b^{3}}italic_p italic_q = divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG
242⁒b22superscript𝑏22b^{2}2 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT2⁒p⁒q⁒b22π‘π‘žsuperscript𝑏22pqb^{2}2 italic_p italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTp⁒q=a2+b2b2π‘π‘žsuperscriptπ‘Ž2superscript𝑏2superscript𝑏2pq=\frac{a^{2}+b^{2}}{b^{2}}italic_p italic_q = divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
252⁒b32superscript𝑏32b^{3}2 italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT2⁒p⁒q⁒b2π‘π‘žπ‘2pqb2 italic_p italic_q italic_bp⁒q=a2+b3bπ‘π‘žsuperscriptπ‘Ž2superscript𝑏3𝑏pq=\frac{a^{2}+b^{3}}{b}italic_p italic_q = divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b end_ARG
262⁒b42superscript𝑏42b^{4}2 italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT2⁒p⁒q2π‘π‘ž2pq2 italic_p italic_qp⁒q=a2+b4π‘π‘žsuperscriptπ‘Ž2superscript𝑏4pq=a^{2}+b^{4}italic_p italic_q = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT
274⁒b4𝑏4b4 italic_bp⁒q⁒b3π‘π‘žsuperscript𝑏3pqb^{3}italic_p italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTp⁒q=2⁒a2+4⁒bb3π‘π‘ž2superscriptπ‘Ž24𝑏superscript𝑏3pq=\frac{2a^{2}+4b}{b^{3}}italic_p italic_q = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 italic_b end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG
284⁒b24superscript𝑏24b^{2}4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTp⁒q⁒b2π‘π‘žsuperscript𝑏2pqb^{2}italic_p italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTp⁒q=2⁒a2+4⁒b2b2π‘π‘ž2superscriptπ‘Ž24superscript𝑏2superscript𝑏2pq=\frac{2a^{2}+4b^{2}}{b^{2}}italic_p italic_q = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
294⁒b34superscript𝑏34b^{3}4 italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTp⁒q⁒bπ‘π‘žπ‘pqbitalic_p italic_q italic_bp⁒q=2⁒a2+4⁒b3bπ‘π‘ž2superscriptπ‘Ž24superscript𝑏3𝑏pq=\frac{2a^{2}+4b^{3}}{b}italic_p italic_q = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b end_ARG
304⁒b44superscript𝑏44b^{4}4 italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTp⁒qπ‘π‘žpqitalic_p italic_qp⁒q=2⁒a2+4⁒b4π‘π‘ž2superscriptπ‘Ž24superscript𝑏4pq=2a^{2}+4b^{4}italic_p italic_q = 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT
Casec+a2𝑐superscriptπ‘Ž2c+a^{2}italic_c + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTcβˆ’a2𝑐superscriptπ‘Ž2c-a^{2}italic_c - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTCondition
3114⁒p⁒q⁒b44π‘π‘žsuperscript𝑏44pqb^{4}4 italic_p italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTp⁒q=2⁒a2+14⁒b4π‘π‘ž2superscriptπ‘Ž214superscript𝑏4pq=\frac{2a^{2}+1}{4b^{4}}italic_p italic_q = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 1 end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG
3222⁒p⁒q⁒b42π‘π‘žsuperscript𝑏42pqb^{4}2 italic_p italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTp⁒q=a2+1b4π‘π‘žsuperscriptπ‘Ž21superscript𝑏4pq=\frac{a^{2}+1}{b^{4}}italic_p italic_q = divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 1 end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG
334p⁒q⁒b4π‘π‘žsuperscript𝑏4pqb^{4}italic_p italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTp⁒q=2⁒a2+4b4π‘π‘ž2superscriptπ‘Ž24superscript𝑏4pq=\frac{2a^{2}+4}{b^{4}}italic_p italic_q = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG
344⁒p⁒q4π‘π‘ž4pq4 italic_p italic_qb4superscript𝑏4b^{4}italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTp⁒q=b4βˆ’2⁒a24π‘π‘žsuperscript𝑏42superscriptπ‘Ž24pq=\frac{b^{4}-2a^{2}}{4}italic_p italic_q = divide start_ARG italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG
354⁒p⁒q⁒b4π‘π‘žπ‘4pqb4 italic_p italic_q italic_bb3superscript𝑏3b^{3}italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTp⁒q=b3βˆ’2⁒a24⁒bπ‘π‘žsuperscript𝑏32superscriptπ‘Ž24𝑏pq=\frac{b^{3}-2a^{2}}{4b}italic_p italic_q = divide start_ARG italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b end_ARG
364⁒p⁒q⁒b24π‘π‘žsuperscript𝑏24pqb^{2}4 italic_p italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTb2superscript𝑏2b^{2}italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTp⁒q=b2βˆ’2⁒a24⁒b2π‘π‘žsuperscript𝑏22superscriptπ‘Ž24superscript𝑏2pq=\frac{b^{2}-2a^{2}}{4b^{2}}italic_p italic_q = divide start_ARG italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
374⁒p⁒q⁒b34π‘π‘žsuperscript𝑏34pqb^{3}4 italic_p italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTb𝑏bitalic_bp⁒q=bβˆ’2⁒a24⁒b3π‘π‘žπ‘2superscriptπ‘Ž24superscript𝑏3pq=\frac{b-2a^{2}}{4b^{3}}italic_p italic_q = divide start_ARG italic_b - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG
382⁒q⁒b32π‘žsuperscript𝑏32qb^{3}2 italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT2⁒p⁒b2𝑝𝑏2pb2 italic_p italic_bp=q⁒b2+a2bπ‘π‘žsuperscript𝑏2superscriptπ‘Ž2𝑏p=qb^{2}+\frac{a^{2}}{b}italic_p = italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b end_ARG
39p𝑝pitalic_p4⁒q⁒b44π‘žsuperscript𝑏44qb^{4}4 italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTp=4⁒q⁒b4βˆ’2⁒a2𝑝4π‘žsuperscript𝑏42superscriptπ‘Ž2p=4qb^{4}-2a^{2}italic_p = 4 italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
402⁒p2𝑝2p2 italic_p2⁒q⁒b42π‘žsuperscript𝑏42qb^{4}2 italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTp=q⁒b4βˆ’a2π‘π‘žsuperscript𝑏4superscriptπ‘Ž2p=qb^{4}-a^{2}italic_p = italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
414⁒p4𝑝4p4 italic_pq⁒b4π‘žsuperscript𝑏4qb^{4}italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTp=q⁒b4βˆ’2⁒a24π‘π‘žsuperscript𝑏42superscriptπ‘Ž24p=\frac{qb^{4}-2a^{2}}{4}italic_p = divide start_ARG italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG
424⁒p⁒b4𝑝𝑏4pb4 italic_p italic_bq⁒b3π‘žsuperscript𝑏3qb^{3}italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTp=q⁒b3βˆ’2⁒a24⁒bπ‘π‘žsuperscript𝑏32superscriptπ‘Ž24𝑏p=\frac{qb^{3}-2a^{2}}{4b}italic_p = divide start_ARG italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b end_ARG
434⁒p⁒b24𝑝superscript𝑏24pb^{2}4 italic_p italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTq⁒b2π‘žsuperscript𝑏2qb^{2}italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTp=q⁒b2βˆ’2⁒a24⁒b2π‘π‘žsuperscript𝑏22superscriptπ‘Ž24superscript𝑏2p=\frac{qb^{2}-2a^{2}}{4b^{2}}italic_p = divide start_ARG italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
444⁒p⁒b34𝑝superscript𝑏34pb^{3}4 italic_p italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTq⁒bπ‘žπ‘qbitalic_q italic_bp=q⁒bβˆ’2⁒a24⁒b3π‘π‘žπ‘2superscriptπ‘Ž24superscript𝑏3p=\frac{qb-2a^{2}}{4b^{3}}italic_p = divide start_ARG italic_q italic_b - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG
452⁒p⁒b32𝑝superscript𝑏32pb^{3}2 italic_p italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT2⁒q⁒b2π‘žπ‘2qb2 italic_q italic_bq=p⁒b2+a2bπ‘žπ‘superscript𝑏2superscriptπ‘Ž2𝑏q=pb^{2}+\frac{a^{2}}{b}italic_q = italic_p italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b end_ARG
46qπ‘žqitalic_q4⁒p⁒b44𝑝superscript𝑏44pb^{4}4 italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTq=4⁒p⁒b4βˆ’2⁒a2π‘ž4𝑝superscript𝑏42superscriptπ‘Ž2q=4pb^{4}-2a^{2}italic_q = 4 italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
472⁒q2π‘ž2q2 italic_q2⁒p⁒b42𝑝superscript𝑏42pb^{4}2 italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTq=p⁒b4βˆ’a2π‘žπ‘superscript𝑏4superscriptπ‘Ž2q=pb^{4}-a^{2}italic_q = italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
484⁒q4π‘ž4q4 italic_qp⁒b4𝑝superscript𝑏4pb^{4}italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTq=p⁒b4βˆ’2⁒a24π‘žπ‘superscript𝑏42superscriptπ‘Ž24q=\frac{pb^{4}-2a^{2}}{4}italic_q = divide start_ARG italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG
494⁒q⁒b4π‘žπ‘4qb4 italic_q italic_bp⁒b3𝑝superscript𝑏3pb^{3}italic_p italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTq=p⁒b3βˆ’2⁒a24⁒bπ‘žπ‘superscript𝑏32superscriptπ‘Ž24𝑏q=\frac{pb^{3}-2a^{2}}{4b}italic_q = divide start_ARG italic_p italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b end_ARG
504⁒q⁒b24π‘žsuperscript𝑏24qb^{2}4 italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTp⁒b2𝑝superscript𝑏2pb^{2}italic_p italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTq=p⁒b2βˆ’2⁒a24⁒b2π‘žπ‘superscript𝑏22superscriptπ‘Ž24superscript𝑏2q=\frac{pb^{2}-2a^{2}}{4b^{2}}italic_q = divide start_ARG italic_p italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
514⁒q⁒b34π‘žsuperscript𝑏34qb^{3}4 italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTp⁒b𝑝𝑏pbitalic_p italic_bq=p⁒bβˆ’2⁒a24⁒b3π‘žπ‘π‘2superscriptπ‘Ž24superscript𝑏3q=\frac{pb-2a^{2}}{4b^{3}}italic_q = divide start_ARG italic_p italic_b - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG
522⁒q⁒b22π‘žsuperscript𝑏22qb^{2}2 italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT2⁒p⁒b22𝑝superscript𝑏22pb^{2}2 italic_p italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTp=qβˆ’a2b2π‘π‘žsuperscriptπ‘Ž2superscript𝑏2p=q-\frac{a^{2}}{b^{2}}italic_p = italic_q - divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
532⁒p⁒q⁒b32π‘π‘žsuperscript𝑏32pqb^{3}2 italic_p italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT2⁒b2𝑏2b2 italic_bp⁒q=bβˆ’a2b3π‘π‘žπ‘superscriptπ‘Ž2superscript𝑏3pq=\frac{b-a^{2}}{b^{3}}italic_p italic_q = divide start_ARG italic_b - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG
542⁒p⁒q⁒b22π‘π‘žsuperscript𝑏22pqb^{2}2 italic_p italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT2⁒b22superscript𝑏22b^{2}2 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTp⁒q=b2βˆ’a2b2π‘π‘žsuperscript𝑏2superscriptπ‘Ž2superscript𝑏2pq=\frac{b^{2}-a^{2}}{b^{2}}italic_p italic_q = divide start_ARG italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
552⁒p⁒q⁒b2π‘π‘žπ‘2pqb2 italic_p italic_q italic_b2⁒b32superscript𝑏32b^{3}2 italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTp⁒q=b3βˆ’a2bπ‘π‘žsuperscript𝑏3superscriptπ‘Ž2𝑏pq=\frac{b^{3}-a^{2}}{b}italic_p italic_q = divide start_ARG italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b end_ARG
562⁒p⁒q2π‘π‘ž2pq2 italic_p italic_q2⁒b42superscript𝑏42b^{4}2 italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTp⁒q=b4βˆ’a2π‘π‘žsuperscript𝑏4superscriptπ‘Ž2pq=b^{4}-a^{2}italic_p italic_q = italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
57p⁒q⁒b3π‘π‘žsuperscript𝑏3pqb^{3}italic_p italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT4⁒b4𝑏4b4 italic_bp⁒q=4⁒bβˆ’2⁒a2b3π‘π‘ž4𝑏2superscriptπ‘Ž2superscript𝑏3pq=\frac{4b-2a^{2}}{b^{3}}italic_p italic_q = divide start_ARG 4 italic_b - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG
58p⁒q⁒b2π‘π‘žsuperscript𝑏2pqb^{2}italic_p italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT4⁒b24superscript𝑏24b^{2}4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTp⁒q=4⁒b2βˆ’2⁒a2b2π‘π‘ž4superscript𝑏22superscriptπ‘Ž2superscript𝑏2pq=\frac{4b^{2}-2a^{2}}{b^{2}}italic_p italic_q = divide start_ARG 4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
59p⁒q⁒bπ‘π‘žπ‘pqbitalic_p italic_q italic_b4⁒b34superscript𝑏34b^{3}4 italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTp⁒q=4⁒b3βˆ’2⁒a2bπ‘π‘ž4superscript𝑏32superscriptπ‘Ž2𝑏pq=\frac{4b^{3}-2a^{2}}{b}italic_p italic_q = divide start_ARG 4 italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b end_ARG
60p⁒qπ‘π‘žpqitalic_p italic_q4⁒b44superscript𝑏44b^{4}4 italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPTp⁒q=4⁒b4βˆ’2⁒a2π‘π‘ž4superscript𝑏42superscriptπ‘Ž2pq=4b^{4}-2a^{2}italic_p italic_q = 4 italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT

3. Six conditions for Ep,qsubscriptπΈπ‘π‘žE_{p,q}italic_E start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT to have rational points

The 60 cases in Table 1 reduce to only six different cases with solutions. These cases are shown in Table 2 and described in more detail in the following.All other cases are treated in the Appendix. Appendix A lists the cases that have no solution and Appendix B explains the cases exhibiting redundancy to one of these six cases.All elliptic curves will have the same structure. As an illustration, Figure 1 shows the sample elliptic curves of case 40 and 56 including their rational points.

CaseConditionSamplesResulting sampleResulting rational points
a, b, p, qelliptic curveon sample elliptic curve
17q=a2+p⁒b4π‘žsuperscriptπ‘Ž2𝑝superscript𝑏4q=a^{2}+pb^{4}italic_q = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT8,3,3,3078333078,3,3,3078 , 3 , 3 , 307y2=x3βˆ’921⁒xsuperscript𝑦2superscriptπ‘₯3921π‘₯y^{2}=x^{3}-921xitalic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 921 italic_x(3079,245627),(βˆ’27,βˆ’72)30792456272772\left(\frac{307}{9},\frac{2456}{27}\right),(-27,-72)( divide start_ARG 307 end_ARG start_ARG 9 end_ARG , divide start_ARG 2456 end_ARG start_ARG 27 end_ARG ) , ( - 27 , - 72 )
26p⁒q=a2+b4π‘π‘žsuperscriptπ‘Ž2superscript𝑏4pq=a^{2}+b^{4}italic_p italic_q = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT7,2,p,65p72𝑝65𝑝7,2,p,\frac{65}{p}7 , 2 , italic_p , divide start_ARG 65 end_ARG start_ARG italic_p end_ARGy2=x3βˆ’65⁒xsuperscript𝑦2superscriptπ‘₯365π‘₯y^{2}=x^{3}-65xitalic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 65 italic_x(654,4558),(βˆ’4,βˆ’14)6544558414\left(\frac{65}{4},\frac{455}{8}\right),(-4,-14)( divide start_ARG 65 end_ARG start_ARG 4 end_ARG , divide start_ARG 455 end_ARG start_ARG 8 end_ARG ) , ( - 4 , - 14 )
32p⁒q=a2+1b4π‘π‘žsuperscriptπ‘Ž21superscript𝑏4pq=\frac{a^{2}+1}{b^{4}}italic_p italic_q = divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 1 end_ARG start_ARG italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG1432,5,p,3281p14325𝑝3281𝑝1432,5,p,\frac{3281}{p}1432 , 5 , italic_p , divide start_ARG 3281 end_ARG start_ARG italic_p end_ARGy2=x3βˆ’3281⁒xsuperscript𝑦2superscriptπ‘₯33281π‘₯y^{2}=x^{3}-3281xitalic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 3281 italic_x(βˆ’125,βˆ’1432125),(82025,23491960)12514321258202523491960\left(-\frac{1}{25},-\frac{1432}{125}\right),(82025,23491960)( - divide start_ARG 1 end_ARG start_ARG 25 end_ARG , - divide start_ARG 1432 end_ARG start_ARG 125 end_ARG ) , ( 82025 , 23491960 )
40p=q⁒b4βˆ’a2π‘π‘žsuperscript𝑏4superscriptπ‘Ž2p=qb^{4}-a^{2}italic_p = italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT2,1,3,721372,1,3,72 , 1 , 3 , 7y2=x3βˆ’21⁒xsuperscript𝑦2superscriptπ‘₯321π‘₯y^{2}=x^{3}-21xitalic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 21 italic_x(7,14),(βˆ’3,βˆ’6)71436(7,14),(-3,-6)( 7 , 14 ) , ( - 3 , - 6 )
47q=p⁒b4βˆ’a2π‘žπ‘superscript𝑏4superscriptπ‘Ž2q=pb^{4}-a^{2}italic_q = italic_p italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT5,2,3,23523235,2,3,235 , 2 , 3 , 23y2=x3βˆ’69⁒xsuperscript𝑦2superscriptπ‘₯369π‘₯y^{2}=x^{3}-69xitalic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 69 italic_x(12,30),(βˆ’234,βˆ’1158)12302341158(12,30),\left(-\frac{23}{4},-\frac{115}{8}\right)( 12 , 30 ) , ( - divide start_ARG 23 end_ARG start_ARG 4 end_ARG , - divide start_ARG 115 end_ARG start_ARG 8 end_ARG )
56p⁒q=b4βˆ’a2π‘π‘žsuperscript𝑏4superscriptπ‘Ž2pq=b^{4}-a^{2}italic_p italic_q = italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT1,2,p,15p12𝑝15𝑝1,2,p,\frac{15}{p}1 , 2 , italic_p , divide start_ARG 15 end_ARG start_ARG italic_p end_ARGy2=x3βˆ’15⁒xsuperscript𝑦2superscriptπ‘₯315π‘₯y^{2}=x^{3}-15xitalic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 15 italic_x(4,2),(βˆ’154,βˆ’158)42154158(4,2),\left(-\frac{15}{4},-\frac{15}{8}\right)( 4 , 2 ) , ( - divide start_ARG 15 end_ARG start_ARG 4 end_ARG , - divide start_ARG 15 end_ARG start_ARG 8 end_ARG )

3.1. Case 17: 𝒒=π’‚πŸ+π’‘β’π’ƒπŸ’π’’superscript𝒂2𝒑superscript𝒃4\boldsymbol{q=a^{2}+pb^{4}}bold_italic_q bold_= bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_p bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT

With b=1𝑏1b=1italic_b = 1, case 8 is a special case of case 17. The square a2superscriptπ‘Ž2a^{2}italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is even, because p𝑝pitalic_p and qπ‘žqitalic_q are odd. Because aβˆˆβ„€π‘Žβ„€a\in\mathbb{Z}italic_a ∈ blackboard_Z, a has to be even. In other words, (pβˆ’q)mod4=0moduloπ‘π‘ž40(p-q)\mod{4}=0( italic_p - italic_q ) roman_mod 4 = 0.According to Polignac’s conjecture (which isn’t proved), there are infinitely many cases of two consecutive prime numbers with difference n if n is even. [2, p. 295].Hence, Case 17 with b=1𝑏1b=1italic_b = 1 describes a subset of Polignac’s conjecture.

3.2. Case 26: 𝒑⁒𝒒=π’‚πŸ+π’ƒπŸ’π’‘π’’superscript𝒂2superscript𝒃4\boldsymbol{pq=a^{2}+b^{4}}bold_italic_p bold_italic_q bold_= bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT

Proving that this case has infinitely solutions is a difficult endeavor. A possible direction is to verify the conjecture that p⁒q=a2+b4π‘π‘žsuperscriptπ‘Ž2superscript𝑏4pq=a^{2}+b^{4}italic_p italic_q = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT has infinitely many solutions, which corresponds to the theorem of Iwaniec and Frielander [3] that there are infinitely many primes of the form p=a2+b4𝑝superscriptπ‘Ž2superscript𝑏4p=a^{2}+b^{4}italic_p = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT. Up to a big integer X𝑋Xitalic_X we have Yπ‘ŒYitalic_Y of the primes whose product is a semiprime of the form a2+b4superscriptπ‘Ž2superscript𝑏4a^{2}+b^{4}italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT.One example is the curve y2=x3βˆ’65⁒xsuperscript𝑦2superscriptπ‘₯365π‘₯y^{2}=x^{3}-65xitalic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 65 italic_x, which is also listed in the LMFDB [4]. The value c=81𝑐81c=81italic_c = 81 and the discriminant is 656164656164\frac{6561}{64}divide start_ARG 6561 end_ARG start_ARG 64 end_ARG.

In the case that p≑3(mod4)𝑝annotated3pmod4p\equiv 3\pmod{4}italic_p ≑ 3 start_MODIFIER ( roman_mod start_ARG 4 end_ARG ) end_MODIFIER or q≑3(mod4)π‘žannotated3pmod4q\equiv 3\pmod{4}italic_q ≑ 3 start_MODIFIER ( roman_mod start_ARG 4 end_ARG ) end_MODIFIER no solution exist [5, p.21]. Let us set p=r2+s2𝑝superscriptπ‘Ÿ2superscript𝑠2p=r^{2}+s^{2}italic_p = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and q=u2+v2π‘žsuperscript𝑒2superscript𝑣2q=u^{2}+v^{2}italic_q = italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. If p≑1(mod4)𝑝annotated1pmod4p\equiv 1\pmod{4}italic_p ≑ 1 start_MODIFIER ( roman_mod start_ARG 4 end_ARG ) end_MODIFIER and q≑1(mod4)π‘žannotated1pmod4q\equiv 1\pmod{4}italic_q ≑ 1 start_MODIFIER ( roman_mod start_ARG 4 end_ARG ) end_MODIFIER we exactly obtain one solution r>s>0π‘Ÿπ‘ 0r>s>0italic_r > italic_s > 0 for p𝑝pitalic_p and one solution u>v>0𝑒𝑣0u>v>0italic_u > italic_v > 0 for qπ‘žqitalic_q [5, p.21]. If we now have these unique solutions p=r2+s2𝑝superscriptπ‘Ÿ2superscript𝑠2p=r^{2}+s^{2}italic_p = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and q=u2+v2π‘žsuperscript𝑒2superscript𝑣2q=u^{2}+v^{2}italic_q = italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, then the product of both primes is p⁒q=(r2+s2)⁒(u2+v2)=(r⁒u+s⁒v)2+(r⁒vβˆ’s⁒u)2=(r⁒uβˆ’s⁒v)2+(r⁒v+s⁒u)2π‘π‘žsuperscriptπ‘Ÿ2superscript𝑠2superscript𝑒2superscript𝑣2superscriptπ‘Ÿπ‘’π‘ π‘£2superscriptπ‘Ÿπ‘£π‘ π‘’2superscriptπ‘Ÿπ‘’π‘ π‘£2superscriptπ‘Ÿπ‘£π‘ π‘’2pq=(r^{2}+s^{2})(u^{2}+v^{2})=(ru+sv)^{2}+(rv-su)^{2}=(ru-sv)^{2}+(rv+su)^{2}italic_p italic_q = ( italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = ( italic_r italic_u + italic_s italic_v ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_r italic_v - italic_s italic_u ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( italic_r italic_u - italic_s italic_v ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_r italic_v + italic_s italic_u ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.Consider b2=csuperscript𝑏2𝑐b^{2}=citalic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_c, other integer solutions for p⁒q=a2+c2=a2+b4π‘π‘žsuperscriptπ‘Ž2superscript𝑐2superscriptπ‘Ž2superscript𝑏4pq=a^{2}+c^{2}=a^{2}+b^{4}italic_p italic_q = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT do not exist, unless one of the four integers r⁒u+s⁒vπ‘Ÿπ‘’π‘ π‘£ru+svitalic_r italic_u + italic_s italic_v, |r⁒vβˆ’s⁒u|π‘Ÿπ‘£π‘ π‘’|rv-su|| italic_r italic_v - italic_s italic_u |, |r⁒uβˆ’s⁒v|π‘Ÿπ‘’π‘ π‘£|ru-sv|| italic_r italic_u - italic_s italic_v | and r⁒v+s⁒uπ‘Ÿπ‘£π‘ π‘’rv+suitalic_r italic_v + italic_s italic_u is a perfect square.

3.3. Case 32: 𝒑⁒𝒒=π’‚πŸ+πŸπ’ƒπŸ’π’‘π’’superscript𝒂21superscript𝒃4\boldsymbol{pq=\frac{a^{2}+1}{b^{4}}}bold_italic_p bold_italic_q bold_= divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_1 end_ARG start_ARG bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT end_ARG

If b=0,2⁒[4]𝑏02delimited-[]4b=0,2[4]italic_b = 0 , 2 [ 4 ] then a=1,3⁒[4]π‘Ž13delimited-[]4a=1,3[4]italic_a = 1 , 3 [ 4 ]. If b=1,3⁒[4]𝑏13delimited-[]4b=1,3[4]italic_b = 1 , 3 [ 4 ] then a=0,2⁒[4]π‘Ž02delimited-[]4a=0,2[4]italic_a = 0 , 2 [ 4 ].

3.4. Case 40: 𝒑=π’’β’π’ƒπŸ’βˆ’π’‚πŸπ’‘π’’superscript𝒃4superscript𝒂2\boldsymbol{p=qb^{4}-a^{2}}bold_italic_p bold_= bold_italic_q bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT bold_- bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT

We note that if b𝑏bitalic_b is odd then aπ‘Žaitalic_a must be even. This is a similar problem as case 8 (which is case 17 with b=1𝑏1b=1italic_b = 1), but not the same.If b𝑏bitalic_b is even, then 24|p+a2conditionalsuperscript24𝑝superscriptπ‘Ž22^{4}|p+a^{2}2 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT | italic_p + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.This case can be transformed to the problem describing primes of the form x2+n⁒y2superscriptπ‘₯2𝑛superscript𝑦2x^{2}+ny^{2}italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_n italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT which is extensively elaborated by David A. Cox [6].

3.5. Case 47: 𝒒=π’‘β’π’ƒπŸ’βˆ’π’‚πŸπ’’π’‘superscript𝒃4superscript𝒂2\boldsymbol{q=pb^{4}-a^{2}}bold_italic_q bold_= bold_italic_p bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT bold_- bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT

Let us set b=2⁒c𝑏2𝑐b=2citalic_b = 2 italic_c and thus consider a2=16⁒p⁒c3βˆ’q⁒csuperscriptπ‘Ž216𝑝superscript𝑐3π‘žπ‘a^{2}=16pc^{3}-qcitalic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 16 italic_p italic_c start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - italic_q italic_c. It follows a2≑16⁒p⁒c3modqsuperscriptπ‘Ž2modulo16𝑝superscript𝑐3π‘ža^{2}\equiv 16pc^{3}\bmod{q}italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≑ 16 italic_p italic_c start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT roman_mod italic_q and a2β‰‘βˆ’q⁒cmodpsuperscriptπ‘Ž2moduloπ‘žπ‘π‘a^{2}\equiv-qc\bmod{p}italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≑ - italic_q italic_c roman_mod italic_p. Using these two congruences we can approach a solution using Quadratic residue and the Chinese remainder theorem.

3.6. Case 56: 𝒑⁒𝒒=π’ƒπŸ’βˆ’π’‚πŸπ’‘π’’superscript𝒃4superscript𝒂2\boldsymbol{pq=b^{4}-a^{2}}bold_italic_p bold_italic_q bold_= bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT bold_- bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT

We can write p⁒q=b4βˆ’a2=(b2βˆ’a)⁒(b2+a)π‘π‘žsuperscript𝑏4superscriptπ‘Ž2superscript𝑏2π‘Žsuperscript𝑏2π‘Žpq=b^{4}-a^{2}=(b^{2}-a)(b^{2}+a)italic_p italic_q = italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_a ) ( italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a ) which leads with p<qπ‘π‘žp<qitalic_p < italic_q to p=b2βˆ’a𝑝superscript𝑏2π‘Žp=b^{2}-aitalic_p = italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_a and q=b2+aπ‘žsuperscript𝑏2π‘Žq=b^{2}+aitalic_q = italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a. This is a special case of the prime gap problem. Setting a=1π‘Ž1a=1italic_a = 1, this is well known as the twin prime conjecture [7, 8].

On families of elliptic curves 𝐸_{𝑝,π‘ž}:𝑦²=π‘₯Β³-π‘β’π‘žβ’π‘₯ that intersect the same line 𝐿_{π‘Ž,𝑏}:𝑦={π‘Ž/𝑏}⁒π‘₯ of rational slope (5)

4. Considering 𝒃𝒃\boldsymbol{b}bold_italic_b being not prime

The six cases in section 3 are derived under the condition that b𝑏bitalic_b is prime. If we consider that b𝑏bitalic_b is not necessarily prime, we can reduce these six cases to four cases.The case 32 with b𝑏bitalic_b prime will be a special case of case 26 with b𝑏bitalic_b not prime.The case 40 with b𝑏bitalic_b prime will be a special case of case 17 with b𝑏bitalic_b not prime.

4.1. Case 17 with 𝒃𝒃\boldsymbol{b}bold_italic_b not prime: 𝒒=π’‚πŸ+π’‘β’π’ƒπŸ’π’’superscript𝒂2𝒑superscript𝒃4\boldsymbol{q=a^{2}+pb^{4}}bold_italic_q bold_= bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_p bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT

Writing b=b1⁒b2𝑏subscript𝑏1subscript𝑏2b=b_{1}b_{2}italic_b = italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with b1,b2subscript𝑏1subscript𝑏2b_{1},b_{2}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT prime and setting cβˆ’a2=2⁒b14⁒p𝑐superscriptπ‘Ž22superscriptsubscript𝑏14𝑝c-a^{2}=2b_{1}^{4}pitalic_c - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 2 italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_p and c+a2=2⁒b24⁒q𝑐superscriptπ‘Ž22superscriptsubscript𝑏24π‘žc+a^{2}=2b_{2}^{4}qitalic_c + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 2 italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_q leads to the modified case b24⁒q=a2+p⁒b14superscriptsubscript𝑏24π‘žsuperscriptπ‘Ž2𝑝superscriptsubscript𝑏14b_{2}^{4}q=a^{2}+pb_{1}^{4}italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_q = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_p italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT. The special case b2=1subscript𝑏21b_{2}=1italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 corresponds to the original case 17. The special case b1=1subscript𝑏11b_{1}=1italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 corresponds to case 40. Therefore this modified case makes the case 40 obsolete.

4.2. Case 26 with 𝒃𝒃\boldsymbol{b}bold_italic_b not prime: 𝒑⁒𝒒=π’‚πŸ+π’ƒπŸ’π’‘π’’superscript𝒂2superscript𝒃4\boldsymbol{pq=a^{2}+b^{4}}bold_italic_p bold_italic_q bold_= bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT

Writing b=b1⁒b2𝑏subscript𝑏1subscript𝑏2b=b_{1}b_{2}italic_b = italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with b1,b2subscript𝑏1subscript𝑏2b_{1},b_{2}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT prime and setting cβˆ’a2=2⁒b14𝑐superscriptπ‘Ž22superscriptsubscript𝑏14c-a^{2}=2b_{1}^{4}italic_c - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 2 italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT and c+a2=2⁒b24⁒p⁒q𝑐superscriptπ‘Ž22superscriptsubscript𝑏24π‘π‘žc+a^{2}=2b_{2}^{4}pqitalic_c + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 2 italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_p italic_q leads to the modified case b24⁒p⁒q=a2+b14superscriptsubscript𝑏24π‘π‘žsuperscriptπ‘Ž2superscriptsubscript𝑏14b_{2}^{4}pq=a^{2}+b_{1}^{4}italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_p italic_q = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT. The special case b2=1subscript𝑏21b_{2}=1italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 corresponds to the original case. The special case b1=1subscript𝑏11b_{1}=1italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 corresponds to case 32.

4.3. Case 47 with 𝒃𝒃\boldsymbol{b}bold_italic_b not prime: 𝒒=π’‘β’π’ƒπŸ’βˆ’π’‚πŸπ’’π’‘superscript𝒃4superscript𝒂2\boldsymbol{q=pb^{4}-a^{2}}bold_italic_q bold_= bold_italic_p bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT bold_- bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT

Writing b=b1⁒b2𝑏subscript𝑏1subscript𝑏2b=b_{1}b_{2}italic_b = italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with b1,b2subscript𝑏1subscript𝑏2b_{1},b_{2}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT prime and setting c+a2=2⁒b14⁒p𝑐superscriptπ‘Ž22superscriptsubscript𝑏14𝑝c+a^{2}=2b_{1}^{4}pitalic_c + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 2 italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_p and cβˆ’a2=2⁒b24⁒q𝑐superscriptπ‘Ž22superscriptsubscript𝑏24π‘žc-a^{2}=2b_{2}^{4}qitalic_c - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 2 italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_q leads to the modified case b24⁒q=p⁒b14βˆ’a2superscriptsubscript𝑏24π‘žπ‘superscriptsubscript𝑏14superscriptπ‘Ž2b_{2}^{4}q=pb_{1}^{4}-a^{2}italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_q = italic_p italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. The special case b2=1subscript𝑏21b_{2}=1italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 corresponds to the original case. The special case b1=1subscript𝑏11b_{1}=1italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 corresponds to case 10 which is impossible to satisfy. Moreover b1subscript𝑏1b_{1}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT must be larger than b2subscript𝑏2b_{2}italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

4.4. Case 56 with 𝒃𝒃\boldsymbol{b}bold_italic_b not prime: 𝒑⁒𝒒=π’ƒπŸ’βˆ’π’‚πŸπ’‘π’’superscript𝒃4superscript𝒂2\boldsymbol{pq=b^{4}-a^{2}}bold_italic_p bold_italic_q bold_= bold_italic_b start_POSTSUPERSCRIPT bold_4 end_POSTSUPERSCRIPT bold_- bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT

Writing b=b1⁒b2𝑏subscript𝑏1subscript𝑏2b=b_{1}b_{2}italic_b = italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with b1,b2subscript𝑏1subscript𝑏2b_{1},b_{2}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT prime and setting c+a2=2⁒b14𝑐superscriptπ‘Ž22superscriptsubscript𝑏14c+a^{2}=2b_{1}^{4}italic_c + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 2 italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT and cβˆ’a2=2⁒b24⁒p⁒q𝑐superscriptπ‘Ž22superscriptsubscript𝑏24π‘π‘žc-a^{2}=2b_{2}^{4}pqitalic_c - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 2 italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_p italic_q leads to the modified case b24⁒p⁒q=b14βˆ’a2superscriptsubscript𝑏24π‘π‘žsuperscriptsubscript𝑏14superscriptπ‘Ž2b_{2}^{4}pq=b_{1}^{4}-a^{2}italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_p italic_q = italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. The special case b2=1subscript𝑏21b_{2}=1italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 corresponds to the original case. The special case b1=1subscript𝑏11b_{1}=1italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 corresponds to case 2 which is impossible to satisfy. Moreover b1subscript𝑏1b_{1}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT must be larger than b2subscript𝑏2b_{2}italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

5. Visualize Patterns

Using the four cases presented in Section 4 we cover any curve Ep,q:y2=x3βˆ’p⁒q⁒x:subscriptπΈπ‘π‘žsuperscript𝑦2superscriptπ‘₯3π‘π‘žπ‘₯E_{p,q}:y^{2}=x^{3}-pqxitalic_E start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT : italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - italic_p italic_q italic_x where p<qπ‘π‘žp<qitalic_p < italic_q are odd primes.In Figure 2 we colorize each cell by red for case 4.1, green for case 4.2, blue for case 4.3 and yellow for case 4.4. The more curves covered by case 4.1 exist, the more intense is the color red. Analogously for the other colors. We unveiled the following patterns:

On families of elliptic curves 𝐸_{𝑝,π‘ž}:𝑦²=π‘₯Β³-π‘β’π‘žβ’π‘₯ that intersect the same line 𝐿_{π‘Ž,𝑏}:𝑦={π‘Ž/𝑏}⁒π‘₯ of rational slope (6)
On families of elliptic curves 𝐸_{𝑝,π‘ž}:𝑦²=π‘₯Β³-π‘β’π‘žβ’π‘₯ that intersect the same line 𝐿_{π‘Ž,𝑏}:𝑦={π‘Ž/𝑏}⁒π‘₯ of rational slope (7)
On families of elliptic curves 𝐸_{𝑝,π‘ž}:𝑦²=π‘₯Β³-π‘β’π‘žβ’π‘₯ that intersect the same line 𝐿_{π‘Ž,𝑏}:𝑦={π‘Ž/𝑏}⁒π‘₯ of rational slope (8)
On families of elliptic curves 𝐸_{𝑝,π‘ž}:𝑦²=π‘₯Β³-π‘β’π‘žβ’π‘₯ that intersect the same line 𝐿_{π‘Ž,𝑏}:𝑦={π‘Ž/𝑏}⁒π‘₯ of rational slope (9)
On families of elliptic curves 𝐸_{𝑝,π‘ž}:𝑦²=π‘₯Β³-π‘β’π‘žβ’π‘₯ that intersect the same line 𝐿_{π‘Ž,𝑏}:𝑦={π‘Ž/𝑏}⁒π‘₯ of rational slope (10)
On families of elliptic curves 𝐸_{𝑝,π‘ž}:𝑦²=π‘₯Β³-π‘β’π‘žβ’π‘₯ that intersect the same line 𝐿_{π‘Ž,𝑏}:𝑦={π‘Ž/𝑏}⁒π‘₯ of rational slope (11)

6. Conclusion and Outlook

So far, we have inferred the conditions that two distinct odd primes p,qπ‘π‘žp,qitalic_p , italic_q must satisfy so that the elliptic curve y2=x3βˆ’p⁒q⁒xsuperscript𝑦2superscriptπ‘₯3π‘π‘žπ‘₯y^{2}=x^{3}-pqxitalic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - italic_p italic_q italic_x can have rational points. There exist many curves that fulfill at least one of these conditions and therefore have rational points. However, the case p=5,q=7formulae-sequence𝑝5π‘ž7p=5,q=7italic_p = 5 , italic_q = 7, namely the elliptic curve y2=x3βˆ’35⁒xsuperscript𝑦2superscriptπ‘₯335π‘₯y^{2}=x^{3}-35xitalic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 35 italic_x has no other solution than (x,y)=(0,0)π‘₯𝑦00(x,y)=(0,0)( italic_x , italic_y ) = ( 0 , 0 ).

Interesting directions for future research may include:

  • β€’

    fixing a line and search for a family of curves where p⁒qπ‘π‘žpqitalic_p italic_q is a congruent number. Plot the (p,q)π‘π‘ž(p,q)( italic_p , italic_q ) pairs and explore a structure

  • β€’

    fixing a curve and search for a family of lines that intersect this curve in rational points

  • β€’

    taking a closer look at the visualized patterns and interpret these by drawing some conclusions about the distribution of prime numbers

7. Acknowledgements

We are grateful for the kind assistance and useful input from mathematics communities like the Stack Exchange Network or the MatheBoard Community. As an example let us mention Servaes and HAL 9000, for whose instant help in matters of number theory we are very grateful as for the help by many other pleasant people from the math communities.

We owe the graphical illustration of the patterns to Arty. He implemented the C++ programs that generate the needed data, which can be checked out on GitHub [9].

Appendix A Reasons for some cases to be unsatisfiable

In the following we provide (numbered) reasons for the unsatisfiability of conditions in Table 1:

  1. a)

    Cases 1, 2, 3, 37, 53 and 54 are impossible to satisfy. This is due to the fact that p⁒qπ‘π‘žpqitalic_p italic_q is an integer requires the fraction’s numerator to be larger than the denominator.

  2. b)

    These cases require b𝑏bitalic_b to be even and as a consequence aπ‘Žaitalic_a to be odd (since aβˆˆβ„€π‘Žβ„€a\in\mathbb{Z}italic_a ∈ blackboard_Z, bβˆˆβ„•π‘β„•b\in\mathbb{N}italic_b ∈ blackboard_N and the fraction abπ‘Žπ‘\frac{a}{b}divide start_ARG italic_a end_ARG start_ARG italic_b end_ARG is reduced). Let us take for example case 4 with the equation 4⁒p⁒q=2⁒a2+b44π‘π‘ž2superscriptπ‘Ž2superscript𝑏44pq=2a^{2}+b^{4}4 italic_p italic_q = 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT that leads to 2⁒p⁒q=a2+b422π‘π‘žsuperscriptπ‘Ž2superscript𝑏422pq=a^{2}+\frac{b^{4}}{2}2 italic_p italic_q = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG when dividing it by 2222 and thus to the contradictory requirement aπ‘Žaitalic_a is even. Another example is case 27 with p⁒q⁒b3=2⁒a2+4⁒bπ‘π‘žsuperscript𝑏32superscriptπ‘Ž24𝑏pqb^{3}=2a^{2}+4bitalic_p italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT = 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 italic_b. Also here b𝑏bitalic_b must be even and therefore aπ‘Žaitalic_a odd. But p⁒q⁒b32=a2+2⁒bπ‘π‘žsuperscript𝑏32superscriptπ‘Ž22𝑏\frac{pqb^{3}}{2}=a^{2}+2bdivide start_ARG italic_p italic_q italic_b start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_b requires aπ‘Žaitalic_a must be even.

  3. c)

    Case 7 is unsolvable. We know that b𝑏bitalic_b must be even and by substituting b𝑏bitalic_b with 2⁒t2𝑑2t2 italic_t we have to solve 16⁒t3⁒p⁒q=a2+t16superscript𝑑3π‘π‘žsuperscriptπ‘Ž2𝑑16t^{3}pq=a^{2}+t16 italic_t start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_p italic_q = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_t which is (16⁒t2⁒p⁒qβˆ’1)⁒t=a216superscript𝑑2π‘π‘ž1𝑑superscriptπ‘Ž2(16t^{2}pq-1)t=a^{2}( 16 italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_p italic_q - 1 ) italic_t = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Since t𝑑titalic_t is coprime with 16⁒t2⁒p⁒qβˆ’116superscript𝑑2π‘π‘ž116t^{2}pq-116 italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_p italic_q - 1, we conclude that 16⁒t2⁒p⁒qβˆ’116superscript𝑑2π‘π‘ž116t^{2}pq-116 italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_p italic_q - 1 is a perfect square, which is impossible by an argument mod4moduloabsent4\bmod 4roman_mod 4. Recall that if xπ‘₯xitalic_x is a perfect square then x≑0mod4π‘₯modulo04x\equiv 0\bmod 4italic_x ≑ 0 roman_mod 4 or x≑1mod4π‘₯modulo14x\equiv 1\bmod 4italic_x ≑ 1 roman_mod 4 [5, p.21].

  4. d)

    Case 31 is impossible to satisfy because the equation 4⁒p⁒q⁒b4=2⁒a2+14π‘π‘žsuperscript𝑏42superscriptπ‘Ž214pqb^{4}=2a^{2}+14 italic_p italic_q italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT = 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 1 has no solution. The reason for this is that on the left side of the equation is an even number and on the right side is an odd number.

  5. e)

    Cases 9, 10, 22 and 38 are unsatisfiable due to the assumed inequality p<qπ‘π‘žp<qitalic_p < italic_q.

  6. f)

    Case 15 is unsatisfiable, since it requires b=1𝑏1b=1italic_b = 1 leading to q=pβˆ’a2π‘žπ‘superscriptπ‘Ž2q=p-a^{2}italic_q = italic_p - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT which violates the assumption p<qπ‘π‘žp<qitalic_p < italic_q.

  7. g)

    Cases 9, 16, 30, 39, 46, 60 are unsatisfiable, since p𝑝pitalic_p and qπ‘žqitalic_q are odd primes and the difference or sum of two even integers cannot be odd.

  8. h)

    Case 55 is unsatisfiable, because it requires b=1𝑏1b=1italic_b = 1 leading to the equation p⁒q=1βˆ’a2π‘π‘ž1superscriptπ‘Ž2pq=1-a^{2}italic_p italic_q = 1 - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT which has no solution.

Appendix B Reasons for some cases to be redundant

B.1. Case 8: 𝒑=π’’β’π’ƒπŸβˆ’π’‚πŸπ’ƒπ’‘π’’superscript𝒃2superscript𝒂2𝒃\boldsymbol{p=qb^{2}-\frac{a^{2}}{b}}bold_italic_p bold_= bold_italic_q bold_italic_b start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_- divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_italic_b end_ARG

The integer b𝑏bitalic_b can only accept the value 1111, because p is an integer. The result is the equation p=qβˆ’a2π‘π‘žsuperscriptπ‘Ž2p=q-a^{2}italic_p = italic_q - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, which is case 17 with b=1𝑏1b=1italic_b = 1.

B.2. Case 14: 𝒑=πŸβ’π’‚πŸ+π’’β’π’ƒπŸ’β’π’ƒπŸ‘π’‘2superscript𝒂2𝒒𝒃4superscript𝒃3\boldsymbol{p=\frac{2a^{2}+qb}{4b^{3}}}bold_italic_p bold_= divide start_ARG bold_2 bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_q bold_italic_b end_ARG start_ARG bold_4 bold_italic_b start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT end_ARG

We can rewrite this condition as q=4⁒b2⁒pβˆ’a2β‹…2bπ‘ž4superscript𝑏2𝑝⋅superscriptπ‘Ž22𝑏q=4b^{2}p-a^{2}\cdot\frac{2}{b}italic_q = 4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_p - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β‹… divide start_ARG 2 end_ARG start_ARG italic_b end_ARG. There are only two possible solutions b=1𝑏1b=1italic_b = 1 and b=2𝑏2b=2italic_b = 2. Setting b=1𝑏1b=1italic_b = 1 leads to q=4⁒pβˆ’2⁒a2π‘ž4𝑝2superscriptπ‘Ž2q=4p-2a^{2}italic_q = 4 italic_p - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT which is a special case of case 46 and is impossible to satisfy due to reason g (Appendix A). Setting b=2𝑏2b=2italic_b = 2 leads to q=24⁒pβˆ’a2π‘žsuperscript24𝑝superscriptπ‘Ž2q=2^{4}p-a^{2}italic_q = 2 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_p - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT which is a special case of case 47.

B.3. Case 21 and 51: 𝒒=π’‘β’π’ƒΒ±πŸβ’π’‚πŸπŸ’β’π’ƒπŸ‘π’’plus-or-minus𝒑𝒃2superscript𝒂24superscript𝒃3\boldsymbol{q=\frac{pb\pm 2a^{2}}{4b^{3}}}bold_italic_q bold_= divide start_ARG bold_italic_p bold_italic_b bold_Β± bold_2 bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_4 bold_italic_b start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT end_ARG

We can rewrite condition of case 21 as p=4⁒b2⁒qβˆ’a2β‹…2b𝑝4superscript𝑏2π‘žβ‹…superscriptπ‘Ž22𝑏p=4b^{2}q-a^{2}\cdot\frac{2}{b}italic_p = 4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_q - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β‹… divide start_ARG 2 end_ARG start_ARG italic_b end_ARG. There are only two possible solutions b=1𝑏1b=1italic_b = 1 and b=2𝑏2b=2italic_b = 2. Setting b=1𝑏1b=1italic_b = 1 leads to p=4⁒qβˆ’2⁒a2𝑝4π‘ž2superscriptπ‘Ž2p=4q-2a^{2}italic_p = 4 italic_q - 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT which is a special sub case of case 39. Setting b=2𝑏2b=2italic_b = 2 leads to p=24⁒qβˆ’a2𝑝superscript24π‘žsuperscriptπ‘Ž2p=2^{4}q-a^{2}italic_p = 2 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_q - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT which is a special sub case of case 40.

Analoguously, we can rewrite condition of case 51 as p=4⁒b2⁒q+a2β‹…2b𝑝4superscript𝑏2π‘žβ‹…superscriptπ‘Ž22𝑏p=4b^{2}q+a^{2}\cdot\frac{2}{b}italic_p = 4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_q + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β‹… divide start_ARG 2 end_ARG start_ARG italic_b end_ARG. There are only two possible solutions b=1𝑏1b=1italic_b = 1 and b=2𝑏2b=2italic_b = 2. Setting b=1𝑏1b=1italic_b = 1 leads to p=4⁒q+2⁒a2𝑝4π‘ž2superscriptπ‘Ž2p=4q+2a^{2}italic_p = 4 italic_q + 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT which is a special sub case of case 9. Setting b=2𝑏2b=2italic_b = 2 leads to p=24⁒q+a2𝑝superscript24π‘žsuperscriptπ‘Ž2p=2^{4}q+a^{2}italic_p = 2 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_q + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT which is a special sub case of case 10. Both cases are impossible to satisfy due to reason e (Appendix A).

B.4. Case 52: 𝒑=π’’βˆ’π’‚πŸπ’ƒπŸπ’‘π’’superscript𝒂2superscript𝒃2\boldsymbol{p=q-\frac{a^{2}}{b^{2}}}bold_italic_p bold_= bold_italic_q bold_- divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_italic_b start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG

The value of b𝑏bitalic_b can only be 1111 to ensure that p𝑝pitalic_p remains an integer. This leads to p=qβˆ’a2π‘π‘žsuperscriptπ‘Ž2p=q-a^{2}italic_p = italic_q - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, which simultaneously goes for case 8, which is a special case of case 17.

B.5. Case 23: 𝒑⁒𝒒=π’‚πŸ+π’ƒπ’ƒπŸ‘π’‘π’’superscript𝒂2𝒃superscript𝒃3\boldsymbol{pq=\frac{a^{2}+b}{b^{3}}}bold_italic_p bold_italic_q bold_= divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_b end_ARG start_ARG bold_italic_b start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT end_ARG

It must b𝑏bitalic_b be odd and aπ‘Žaitalic_a must be even. Only solutions for b=1𝑏1b=1italic_b = 1 exist, since the right-hand side of a2b=p⁒q⁒b2βˆ’1superscriptπ‘Ž2π‘π‘π‘žsuperscript𝑏21\frac{a^{2}}{b}=pqb^{2}-1divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b end_ARG = italic_p italic_q italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 1 is an integer and the left-hand side is a fraction unless b𝑏bitalic_b is 1111. Setting b=1𝑏1b=1italic_b = 1 boils the condition down to p⁒q=a2+1π‘π‘žsuperscriptπ‘Ž21pq=a^{2}+1italic_p italic_q = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 1 which is a special sub case of case 26.

B.6. Case 24: 𝒑⁒𝒒=π’‚πŸ+π’ƒπŸπ’ƒπŸπ’‘π’’superscript𝒂2superscript𝒃2superscript𝒃2\boldsymbol{pq=\frac{a^{2}+b^{2}}{b^{2}}}bold_italic_p bold_italic_q bold_= divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_b start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_italic_b start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG

Also here no solution exist for b>1𝑏1b>1italic_b > 1. The product p⁒q=(ab)2+1π‘π‘žsuperscriptπ‘Žπ‘21pq=\left(\frac{a}{b}\right)^{2}+1italic_p italic_q = ( divide start_ARG italic_a end_ARG start_ARG italic_b end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 1 can only be an integer when b=1𝑏1b=1italic_b = 1 because the fraction abπ‘Žπ‘\frac{a}{b}divide start_ARG italic_a end_ARG start_ARG italic_b end_ARG is reduced (by assumption aπ‘Žaitalic_a and b𝑏bitalic_b are coprime). For this reason, case 24 is the same special case of case 26, just as case 23 does.

B.7. Case 25: 𝒑⁒𝒒=π’‚πŸ+π’ƒπŸ‘π’ƒπ’‘π’’superscript𝒂2superscript𝒃3𝒃\boldsymbol{pq=\frac{a^{2}+b^{3}}{b}}bold_italic_p bold_italic_q bold_= divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ bold_italic_b start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT end_ARG start_ARG bold_italic_b end_ARG

This case is identical with cases 23 and 24, since it provides only solutions for b=1𝑏1b=1italic_b = 1 as well. The reason for this is analogous to both previous cases. Here a2bsuperscriptπ‘Ž2𝑏\frac{a^{2}}{b}divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_b end_ARG is a fraction unless b=1𝑏1b=1italic_b = 1. For this reason, case 25 is the same special case of case 26, just as case 23 does.

B.8. Case 29 and Case 59: 𝒑⁒𝒒=πŸ’β’π’ƒπŸ‘Β±πŸβ’π’‚πŸπ’ƒπ’‘π’’plus-or-minus4superscript𝒃32superscript𝒂2𝒃\boldsymbol{pq=\frac{4b^{3}\pm 2a^{2}}{b}}bold_italic_p bold_italic_q bold_= divide start_ARG bold_4 bold_italic_b start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT bold_Β± bold_2 bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_italic_b end_ARG

In this case we get solutions if b𝑏bitalic_b divides 2⁒a22superscriptπ‘Ž22a^{2}2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Therefore only solutions exist if b=2𝑏2b=2italic_b = 2, as per assumption aπ‘Žaitalic_a and b𝑏bitalic_b are coprime. For Case 29, setting b=2𝑏2b=2italic_b = 2 boils the condition down to p⁒q=a2+24π‘π‘žsuperscriptπ‘Ž2superscript24pq=a^{2}+2^{4}italic_p italic_q = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT which is a special sub case of case 26. For case 59, setting b=2𝑏2b=2italic_b = 2 boils the condition down to p⁒q=24βˆ’a2π‘π‘žsuperscript24superscriptπ‘Ž2pq=2^{4}-a^{2}italic_p italic_q = 2 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT which is a special sub case of case 56.

B.9. Case 44: 𝒑=π’’β’π’ƒβˆ’πŸβ’π’‚πŸπŸ’β’π’ƒπŸ‘π’‘π’’π’ƒ2superscript𝒂24superscript𝒃3\boldsymbol{p=\frac{qb-2a^{2}}{4b^{3}}}bold_italic_p bold_= divide start_ARG bold_italic_q bold_italic_b bold_- bold_2 bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_4 bold_italic_b start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT end_ARG

We can rewrite this condition as q=4⁒b2⁒p+a2⁒2bπ‘ž4superscript𝑏2𝑝superscriptπ‘Ž22𝑏q=4b^{2}p+a^{2}\frac{2}{b}italic_q = 4 italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_p + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG 2 end_ARG start_ARG italic_b end_ARG. There are only two possible solutions b=1𝑏1b=1italic_b = 1 and b=2𝑏2b=2italic_b = 2. Setting b=1𝑏1b=1italic_b = 1 leads to q=4⁒p+2⁒a2π‘ž4𝑝2superscriptπ‘Ž2q=4p+2a^{2}italic_q = 4 italic_p + 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT which is a special case of case 16 and is impossible to satisfy due to reason g (Appendix A). Setting b=2𝑏2b=2italic_b = 2 leads to q=24⁒p+a2π‘žsuperscript24𝑝superscriptπ‘Ž2q=2^{4}p+a^{2}italic_q = 2 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_p + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT which is a special case of case 17.

B.10. Case 45: 𝒒=π’‘β’π’ƒπŸ+π’‚πŸπ’ƒπ’’π’‘superscript𝒃2superscript𝒂2𝒃\boldsymbol{q=pb^{2}+\frac{a^{2}}{b}}bold_italic_q bold_= bold_italic_p bold_italic_b start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT bold_+ divide start_ARG bold_italic_a start_POSTSUPERSCRIPT bold_2 end_POSTSUPERSCRIPT end_ARG start_ARG bold_italic_b end_ARG

See argumentation in B.4.

References

  • [1]Reinhold Remmert and Peter Ullrich.Elementare Zahlentheorie.BirkhΓ€user, Basel, Switzerland, 3 edition, 2008.
  • [2]O.BordellΓ¨s.Arithmetic Tales. Advanced Edition.Springer, 2020.
  • [3]J.Friedlander and H.Iwaniec.Using a parity-sensitive sieve to count prime values of a polynomial.Proc. Natl. Acad. Sci. USA, 94(4):1054–1058, 1997.
  • [4]LMFDBThe L-functions and ModularForms Database.Elliptic curve with lmfdb label 135200.bq1 (cremona label 135200o1).https://www.lmfdb.org/EllipticCurve/Q/135200/bq/1, 2021.
  • [5]M.Aigner and G.M. Ziegler.Proofs from THE BOOK.Springer, 5 edition, 2014.
  • [6]D.A. Cox.Primes of the Form x2+n⁒y2superscriptπ‘₯2𝑛superscript𝑦2x^{2}+ny^{2}italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_n italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.Wiley, 2 edition, 2013.
  • [7]Fred Cohen and J.L. Selfridge.Not every number is the sum or difference of two prime powers.Mathematics of Computation, 29(129):79–81, 1975.
  • [8]M.Ram Murty.The twin prime problem and generalizations (aprΓ¨s yitang zhang).Resonance, 18(8):712–731, 2013.
  • [9]Eldar Sultanow.elliptic_curves.https://github.com/Sultanow/elliptic_curves/tree/master/cpp,2022.
On families of elliptic curves 𝐸_{𝑝,π‘ž}:𝑦²=π‘₯Β³-π‘β’π‘žβ’π‘₯ that intersect the same line 𝐿_{π‘Ž,𝑏}:𝑦={π‘Ž/𝑏}⁒π‘₯ of rational slope (2024)
Top Articles
Latest Posts
Article information

Author: Carmelo Roob

Last Updated:

Views: 6566

Rating: 4.4 / 5 (45 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Carmelo Roob

Birthday: 1995-01-09

Address: Apt. 915 481 Sipes Cliff, New Gonzalobury, CO 80176

Phone: +6773780339780

Job: Sales Executive

Hobby: Gaming, Jogging, Rugby, Video gaming, Handball, Ice skating, Web surfing

Introduction: My name is Carmelo Roob, I am a modern, handsome, delightful, comfortable, attractive, vast, good person who loves writing and wants to share my knowledge and understanding with you.